Tetraarsenic Hexoxide Demonstrates Anticancer Activities at Least in Part through Suppression of NF-κB-mediated Cellular Responses in Hep3B Human Hepatocellular Carcinoma Cells

Min Jeong Kim1*, Ji Hyun Jung1*, Won Sup Lee1, Jeong Won Yun1, Jing Nan Lu1, Sang Mi Yi1, Hye Jung Kim2, Seong-Hwan Chang3, Gon Sup Kim4, Jin-Myung Jung5, Soon Chan Hong6 and Woo Song Ha6

1Departments of Internal Medicine, 2Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, 3Department of Surgery, Konkuk University School of Medicine, Seoul 143-701, 4School of Veterinary and Research Institute of Life Science, Institute of Life Science, Gyeongsang National University, Jinju 660-701, Departments of 5Neurosurgery and 6Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea

Tetraarsenic hexoxide (As4O6) has been used in Korean folk remedy for the treatment of cancer since the late 1980’s, and arsenic trioxide (As2O3) is currently used as a chemotherapeutic agent. However, evidence suggests that As4O6-induced cell death pathway was different from that of As2O3. Nuclear factor-κB (NF-κB) is a well-known transcription factor involved in cell proliferation, invasion and metastasis. Here, we investigated the effects of As4O6 on NF-κB activity and NF-κB-regulated gene expressions. As4O6 partially suppressed NF-κB activation induced by TNF-α, and inhibited cell proliferation induced by TNF. As4O6 also suppressed the downstream NF-κB-regulated proteins involved in cancer anti-apoptosis, proliferation, invasion, and metastasis. This study demonstrates that As4O6 have anticancer properties through suppression of NF-κB-mediated cellular responses. (*Cancer Prev Res 17, 331-337, 2012)

Key Words: Tetraarsenic hexoxide, Nuclear factor-κB, Apoptosis, Hepatocellular carcinoma

INTRODUCTION

Arsenic trioxide (As2O3) had been used in Chinese medicine for cancer treatment, and is now used as the standard treatment for refractory acute promyelocytic leukemia (APL).1,2 Some clinical trials was performed in a certain type of solid cancers,3,4 but they failed to prove clinical efficacy due to its toxicities.3,6 Tetraarsenic hexoxide (As4O6) had been used as a Korean folk remedy for the management of cancer since the late 1980’s. However, few researches regarding the anticancer effects of As4O6 have been executed. A previous study showed...
that the anticancer effects of As4O6 was more potent than those of As2O3 in human cancer cells in vitro, and that signaling pathways of As4O6-induced cell death were different from those of As2O3.8) In addition, As4O6 had mostly been used for solid cancer in Korea. Hepatocellular carcinoma is one of the most frequent cancers in the world.9) For the treatment, surgical resection is frequently limited due to metastasis like most of other cancers even though the hepatic reservoirs are suitable for the surgery. In addition, few chemotherapeutic drugs are available for the treatment of metastatic lesions. Therefore, the development of chemotherapeutic agents is urgent for this disease. Nuclear factor-kappa B (NF-kappa B) is a well-known transcription factor linked with carcinogenic process including oxidative and inflammatory process, cell survival, and proliferation and metastasis.10) Here, we explored the anti-cancer effects of As4O6 with special focus on NF-kappa B pathway, on NF kappa B-regulated gene products, and on NF-kappa B-mediated cellular responses.

MATERIALS AND METHODS

1. Cells and reagents

Hep3B human hepatocellular carcinoma cells from the American type culture collection (Rockville, MD, USA) were cultured in RPMI 1640 medium (Invitrogen Corp., Carlsbad, CA, USA) supplemented with 10% (v/v) fetal bovine serum (FBS), 1 mM L-glutamine, 100 U/mL penicillin, and 100 μg/ml streptomycin at 37°C in a humidified atmosphere of 95% air and 5% CO2. As4O6 was provided from Chonjisan Institute (Seoul, Korea). Antibodies against COX-2, cyclin D1, c-Myc, Bcl-2, Bcl-xL, XIAP, cIAP-1, cIAP-2, MMP-2, MMP-9, VEGF, ICAM-1, poly (ADP-ribose) polymerase (PARP), procaspase 3, and pro caspase 9, and NF-kappa B (p65) were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). An antibody against β-actin was from Sigma (Beverly, MA, USA). Peroxidase-labeled donkey anti-rabbit and sheep anti-mouse immunoglobulins, and an enhanced chemiluminescence (ECL) kit were purchased from Amersham (Arlington Heights, IL, USA). All other chemicals not specifically cited here were purchased from Sigma Chemical Co. (St. Louis, MO, USA).

1) MTT assay: For the cell viability assay, the cells were seeded onto 24-well plates at a concentration of 5×10^3 cells/ml, and then treated with the indicated concentration of As4O6 for 24 or 48 h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (0.5 mg/ml) was subsequently added to each well. After 3 h of additional incubation, 100 μl of a solution containing 10% SDS (pH 4.8) plus 0.01 N HCl was added to dissolve the crystals. The absorption values at 570 nm were determined with an ELISA plate reader.

2. DAPI staining

After treatment with the indicated concentration of As4O6, the cells were harvested, washed with phosphate-buffered saline (PBS) and fixed with 3.7% paraformaldehyde in PBS for 10 min at room temperature. Fixed cells were washed with PBS and stained with 2.5 μg/ml 4,6-diamidino-2-phenylindole (DAPI) solution for 10 min at room temperature. The cells were washed two times with PBS and analyzed under a fluorescent microscope.

3. Western blotting

The concentrations of cell lysate proteins were determined by Bradford protein assay (Biorad Lab., Richmond, CA, USA) using bovine serum albumin as the standard. To determine the protein expression of NF-kappa B in the cytoplasm and the nuclei, we prepared separate extracts. Thirty micrograms of the lysate proteins were resolved by electrophoresis, electrotransferred to polyvinylidene difluoride membranes (Millipore, Bedford, MA, USA), and then incubated with primary antibodies followed by secondary antibody conjugated to peroxidase. Blots were developed with an ECL detection system.

4. Determination of caspase activity

Caspase activities were determined by colorimetric assays using caspase-3 activation kits under the manufacturer’s instructions. The kits include synthetic tetrapeptides labeled with p-nitroanilide. Briefly, the cells were lysed with the provided lysis buffer. The supernatants were collected and incubated with the supplied reaction buffer containing dithiothreitol and substrates at 37°C. The caspase activity was determined by assessing the absorbance at 405 nm, using the microplate reader.

5. Statistics

Each experiment was performed in triplicate. The results were expressed as means±SD. Significant differences were de-
Min Jeong Kim, et al: Tetraarsenic Hexoxide Inhibits NF-κB Activity

Fig. 1. Inhibition of cell growth and induction of apoptosis by As4O6 in Hep3B cells. The cells were seeded at the density of 5×10^4 cells per ml. The inhibition of cell growth was measured by MTT assay. (A) The cells were treated with the indicated concentrations of As4O6 for 48 h. The growth inhibition and cytotoxicity As4O6 were shown in a dose-dependent manner. (B) After fixation, the cells were stained with DAPI solution to observe apoptotic bodies. Stained nuclei were then observed under fluorescent microscope using a blue filter (Magnification, ×400). The data are shown as means±SD of three independent experiments. *p<0.05 between the treated and the untreated control group.

RESULTS

1. Effects of As4O6 on cell growth in Hep3B human hepatocellular carcinoma cells

To investigate the anti-tumor activity of As4O6 in Hep3B cells, cells were treated for 48 h with various concentrations of As4O6 (0.1∼5 μM). The cell growth was assessed by MTT assay, which revealed that by As4O6 inhibited the growth of Hep3B cells in a dose-dependent manner, and the 50% inhibition of cell growth (IC50) was less than 0.5 μM (Fig. 1A).

2. Effects of As4O6 on apoptosis

To determine whether the decrease in cell growth of Hep3B cells was related to induction of cell death and which type of cell death, we assessed the changes in nuclear morphology of As4O6-treated cells under microscopy with DAPI staining. The DAPI staining revealed the condensed and fragmented nuclei at a concentration of 1 μM or higher. However, the amount of fragmented nuclei was substantially increased in a dose-dependent manner (Fig. 1B). This study suggests that As4O6-induced cell death is related to apoptosis.

3. Caspases activation and subsequent cleavage of their substrates by As4O6

To determine whether As4O6 induced caspase-dependent apoptosis, we assessed the effects of As4O6 on caspases and their substrates (PARP). As4O6 decreased the expression levels of procaspase-3, and procaspase-9, which indicated caspase activation. We also found the cleavages of PARP in a dose-dependent manner (Fig. 2A). In order to further quantify the proteolytic activation of caspases, the equalized lysates were assayed for their activity using the colorimetric assay kit for caspase-3 activity, and we found that As4O6 caused substantially increases in proteolytic activities of caspase 3. This finding is consistent with data from Western blot analysis (Fig. 2B). The decrease of caspase 3 observed over the concentration of 1 μM (IC50=0.5 μM) may be derived from cell death. These findings suggest that As4O6 may induce apoptotic death through a caspase-dependent pathway.

4. Effects of As4O6 on NF-κB and NF-κB-related cellular responses.

NF-κB comprises a heterotrimer of p50, p65, and IκBα in the cytoplasm; when activated, the heterodimer of p50 and p65 is translocated into the nucleus. NF-κB activation pathway is involved in the cancer proliferation, invasion, and metastasis. Here, we investigated whether As4O6 inhibit NF-κB activation using Western blot analysis. We used TNF-α as a NF-κB stimulant to clearly demonstrate the effects of As4O6 on NF-κB. Western blot analysis revealed that pretreatment with As4O6 partially inhibited NF-κB (p65) translocation into the nucleus, which indicated the inhibition of NF-κB activation caused by TNF-α (Fig. 3).

When TNF-α bind to TNF receptors, this binding lead to
Fig. 2. Activation of caspases and cleavage of PARP during the As₄O₆-induced apoptosis in Hep3B cells. (A) The cells were incubated at the indicated concentrations of As₄O₆ for 24 h. Total cell lysates were resolved by SDS-polyacrylamide gels and transferred onto nitrocellulose membranes. The membranes were probed with the anti-caspase-3, anti-caspase-9 and anti-PARP antibodies. The proteins were visualized using an ECL detection system. β-Actin was used as an internal control. (B) The cell lysates from the cells treated with As₄O₆ were assayed for in vitro caspase-3 activity using DEVD-pNA as a substrate. The released fluorescent products were measured. Each bar graph represents mean±SD of three independent experiments. *p<0.05 between the treated and the untreated control group.

Fig. 3. Effects of As₄O₆ on NF-κB. Cells (5×10⁴ cells), either left untreated or pretreated with As₄O₆ for 1 h, were exposed to TNF (10 nM) for 30 min. After treatment, nuclear or cytoplasmic fractions or total cell lysates were extracted, and protein levels were determined by Western blot analysis as described in Materials and Methods.

a conformational change which enables the adaptor protein TRADD to bind to the death domain. After that, three pathways can be initiated. One is survival pathway and the others are proapoptotic or death pathway. The former pathway is related to NF-κB activation. Like all death-domain-containing members of the TNFR superfamily, TNF-R1 is involved in death signaling. However, TNF-induced cell death plays only a minor role compared to its overwhelming functions because its death-inducing capability is weak and often masked by the anti-apoptotic effects of NF-κB. Therefore, to confirm whether this finding is related to cancer cell proliferation, we performed MTT assay, because if As₄O₆ suppresses NF-κB activity, TNF-α should augment the anti-cancer effects of As₄O₆. As shown in Fig. 4, TNF-α alone did not show anti-proliferative effects but TNF-α augmented the anti-cancer effects of As₄O₆. This study suggests that As₄O₆ inhibit NF-κB activation.

5. As₄O₆ suppresses NF-κB-regulated proteins involved in anti-apoptosis, proliferation, invasion and angiogenesis.

We observed that As₄O₆ inhibited NF-κB activation. NF-κB activation leads to activation of several genes involved in anti-apoptosis, proliferation, invasion and angiogenesis in cancer. NF-κB regulates the expression of the anti-apoptotic proteins (c-IAP1/2, XIAP, Bcl-2, Bcl-xL). Cyclin D1 and COX-2 are overexpressed in a variety of cancers and mediates cancer cell proliferation and c-Myc is also involved in cancer cell proliferation. The roles of MMP-2, MMP-9, ICAM-1, and VEGF
in invasion and angiogenesis of cancer are well known. All these gene products are known to be regulated by NF-κB, so we investigated the effect of As₄O₆ on this regulation.

TNF-α is known to be linked to the activation of these genes. To investigate the effects of As₄O₆ on the NF-κB-regulated proteins, we performed Western blot analysis. Here, we also use TNF-α as a stimulator of. We found that TNF-α stimulated the NF-κB-regulated proteins involved in anti-apoptosis (c-IAP1, c-IAP2, XIAP, Bcl-2, and Bcl-xL), cancer cell proliferation (COX-2, c-Myc and cyclin D1), and invasion & angiogenesis (MMP-2, MMP-9, ICAM-1, and VEGF) (Fig 5). As₄O₆ suppressed the TNF-α-induced NF-κB-regulated proteins involved in anti-apoptosis, proliferation, invasion and angiogenesis in Hep3B cells (Fig 5). These findings also support that As₄O₆ NF-κB-mediated cellular responses.

DISCUSSION

This study was designed to investigate the anti-cancer effects
of As₂O₃ with special focus on NF-κB pathway, on NF-κB-regulated gene products, and on NF-κB-mediated cellular responses. We found that As₂O₃ inhibited NF-κB activity and NF-κB-regulated proteins involved in anti-apoptosis, cell proliferation, invasion, and angiogenesis. Even though this finding is novel for As₂O₃, and there are previous supporting evidence showing arsenic trioxide (As₂O₃) could suppress NF-κB activation.¹⁷) TNF-α induces cell death through extrinsic pathway in some cells,¹⁸) but most of cancer cell lines are resistant to TNF-α folowed by the enhanced transcription of anti-apoptotic proteins like cIAP1/cIAP2, C-FLIP, and Bcl-2 that can interfere with death signaling.¹⁹) Therefore, like Hep3B cells, TNF-α indeed augments cell proliferation in most of cancer cells.¹⁶,¹⁹) In addition, TNF-α is usually increased in patients with advanced cancers.²⁰) Therefore, pathophysiological relevance of TNF-α-induced NF-κB activation is underlined in NF-κB-related study in cancer field. Here, we clearly demonstrate the inhibitory effects of As₂O₃ by using TNF-α on the molecules involved in metastasis, especially on the molecules related to NF-κB.

NF-κB is a well known transcription factor involved in cancer metastasis. We found that As₂O₃ suppressed MMP-2 and MMP-9 activity. MMP-2 and MMP-9 are key molecules in cancer cell invasion²¹,²²) which have been targets for drug development against cancer invasion.²³) We also found that As₂O₃ suppressed COX-2, Cyclin D1, and c-Myc. COX-2 are well-known to be overexpressed in a variety of cancers and mediates cancer cell proliferation¹⁴,¹⁵,²⁰) and c-Myc is also involved in cancer cell proliferation.¹⁶) In addition the roles of ICAM-1, and VEGF in angiogenesis of cancer are well known.¹³) All these gene products are known to be regulated by NF-κB.¹³,²⁰) In conclusion, this study suggested that As₂O₃ should exert anticancer effects by suppressing NF-κB and NF-κB-regulated genes involved in anti-apoptosis, proliferation, and invasion & angiogenesis in cancer. This study provides evidence that As₂O₃ might have anticancer effects on human hepatocellular carcinoma.

ACKNOWLEDGEMENT

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0007389).

REFERENCES

